117 research outputs found

    Fluctuations at the blue edge of saturated wind lines in IUE spectra of O-type stars

    Get PDF
    We examine basic issues involved in synthesizing resonance-line profiles from 1-D, dynamical models of highly structured hot-star winds. Although these models exhibit extensive variations in density as well as velocity, the density scale length is still typically much greater than the Sobolev length. The line transfer is thus treated using a Sobolev approach, as generalized by Rybicki & Hummer (1978) to take proper account of the multiple Sobolev resonances arising from the nonmonotonic velocity field. The resulting reduced-Lambda-matrix equation describing nonlocal coupling of the source function is solved by iteration, and line profiles and then derived from formal solution integration using this source function. The more appropriate methods that instead use either a stationary or a structured, local source function yield qualitatively similar line-profiles, but are found to violate photon conservation by 10 percent or more. The full results suggest that such models may indeed be able to reproduce naturally some of the qualitative properties long noted in observed UV line profiles, such as discrete absorption components in unsaturated lines, or the blue-edge variability in saturated lines. However, these particular models do not yet produce the black absorption troughs commonly observed in saturated lines, and it seems that this and other important discrepancies (e.g., in acceleration time scale of absorption components) may require development of more complete models that include rotation and other 2-D and/or 3-D effects

    X ray emission from dynamical shock models in hot-star winds

    Get PDF
    The principal aim of this project was to determine whether x ray emission from instability-generated shocks in dynamical models of highly unstable hot-star winds could explain the x ray flux spectrum observed from such hot stars by Einstein and other x ray satellites. Our initial efforts focused on extending the earlier isothermal simulations of wind instabilities to include an explicit treatment of the energy balance between shock heating and simplified radiative cooling. It was found, however, that direct resolution of cooling regions behind shocks is often impractical, and thus additional, indirect methods for determining this shock x ray emission were also developed. The results indicate that the reverse shocks that dominate simple 1-D instability models typically have too little material undergoing a strong shock to produce the observed x ray emission. Other models with more strongly driven variability from the wind base sometimes show high-speed collisions between relatively dense clumps, and in these instances the computed x ray flux spectrum matches the observed spectrum quite well. This suggests that collisions between relatively large scale wind streams of different speeds may be more suited to producing the observed x rays than the reverse shocks arising from small-scale instabilities

    The Effect of Magnetic Field Tilt and Divergence on the Mass Flux and Flow Speed in a Line-Driven Stellar Wind

    Full text link
    We carry out an extended analytic study of how the tilt and faster-than-radial expansion from a magnetic field affect the mass flux and flow speed of a line-driven stellar wind. A key motivation is to reconcile results of numerical MHD simulations with previous analyses that had predicted non-spherical expansion would lead to a strong speed enhancement. By including finite-disk correction effects, a dynamically more consistent form for the non-spherical expansion, and a moderate value of the line-driving power index α\alpha, we infer more modest speed enhancements that are in good quantitative agreement with MHD simulations, and also are more consistent with observational results. Our analysis also explains simulation results that show the latitudinal variation of the surface mass flux scales with the square of the cosine of the local tilt angle between the magnetic field and the radial direction. Finally, we present a perturbation analysis of the effects of a finite gas pressure on the wind mass loss rate and flow speed in both spherical and magnetic wind models, showing that these scale with the ratio of the sound speed to surface escape speed, a/vesca/v_{esc}, and are typically 10-20% compared to an idealized, zero-gas-pressure model.Comment: Accepted for publication in ApJ, for the full version of the paper go to: http://www.bartol.udel.edu/~owocki/preprints/btiltdiv-mdotvinf.pd

    A Porosity-Length Formalism for Photon-Tiring-Limited Mass Loss from Stars Above the Eddington Limit

    Full text link
    We examine radiatively driven mass loss from stars near and above the Eddington limit (Ledd). We begin by reviewing the instabilities that are expected to form extensive structure near Ledd. We investigate how this "porosity" can reduce the effective coupling between the matter and radiation. Introducing a new "porosity-length'' formalism, we derive a simple scaling for the reduced effective opacity, and use this to derive an associated scaling for the porosity-moderated, continuum-driven mass loss rate from stars that formally exceed Ledd. For a simple super-Eddington model with a single porosity length that is assumed to be on the order of the gravitational scale height, the overall mass loss is similar to that derived in previous porosity work. This is much higher than is typical of line-driven winds, but is still only a few percent of the photon tiring limit--for which the luminosity becomes insufficient to carry the flow out of the gravitational potential. To obtain still stronger mass loss that approaches observationally inferred values near this limit, we introduce a power-law-porosity model in which the associated structure has a broad range of scales. We show that the mass loss rate can be enhanced by a factor that increases with the Eddington parameter Gamma, such that for moderately large Gamma (> 3-4), mass loss rates could approach the photon tiring limit. Together with the ability to drive quite fast outflow speeds, the derived mass loss could explain the large inferred mass loss and flow speeds of giant outbursts in eta Carinae and other LBV stars.Comment: 17 pages, 6 figures, to appear in Ap
    • 

    corecore